Privacy Protection Using Sensitive Data Protection Algorithm In Frequent Itemset Mining Of Medical Datasets

نویسنده

  • Usha Nandini
چکیده

Frequent Itemset Mining (FIM) is one of the most eminent techniques in the Data mining systems. The exploration of Frequent Itemset Mining distills the recurring knowledge from the incessant data. Explosion of Frequent Itemset Mining in the field of Data Analysis and Data Mining becomes an inescapable one. The paper focuses on “searching the accurate records of efficient database queries without compromising the breach of trust using Sensitive Data Protection Algorithm”. This algorithm divides the database into several partitions. Each partition holds the frequent items of the database in a ranked manner. In data protection perspective, the data gets luxated rather than adding blowing of noise. Next, a user-defined threshold is located to retrieve the necessitate records from the datasets which reduces the time consumed for scanning the whole database. The above process is executed for only authorized user, if any violation, an alert is activated and forwarded to the specified user. In experimental view, it is checked on “Doctor online” dataset that widely used for analysis of medical database queries. Performance metrics such as Precision and Recall is analyzed. Experimental results prove that the medical records are easily retrieved and protected with an improved sensitive data protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Preserving Frequent Itemset Mining by Reducing Sensitive Items Frequency using GA

Frequent Itemset mining extracts novel and useful knowledge from large repositories of data and this knowledge is useful for effective analysis and decision making in telecommunication networks, marketing, medical analysis, website linkages, financial transactions, advertising and other applications. The misuse of these techniques may lead to disclosure of sensitive information. Motivated by th...

متن کامل

Personalized Privacy-Preserving Frequent Itemset Mining Using Randomized Response

Frequent itemset mining is the important first step of association rule mining, which discovers interesting patterns from the massive data. There are increasing concerns about the privacy problem in the frequent itemset mining. Some works have been proposed to handle this kind of problem. In this paper, we introduce a personalized privacy problem, in which different attributes may need differen...

متن کامل

Privacy Preserving Association Rule Mining by Concept of Impact Factor using Item Lattice

Association Rules revealed by association rule mining may contain some sensitive rules, which may cause potential threats towards privacy and protection. Association rule hiding is a competent solution that helps enterprises keeps away from the hazards caused by sensitive knowledge leakage when sharing the data in their collaborations. This study shows how to protect actionable knowledge for st...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

MINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS

This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016